Laser shutter Manual

Table of contents

1. Introduction…………………………………………………….1
2. Specifications…………………………………………………..2
3. Operation manual………………………………………………3
4. Detailed description of switchers………………………………3
5. Control via RS232……………………………………………..5

Introduction

Fig.1 Laser shutter photo.

Possible applications: laser cutting, drilling, engraving, laser surgery systems, research and others.

Laser shutter is designed for fast single interruption or multiple exposure of high power laser beam in spectral region from UV to IR. Operation of Laser Shutter is based on the fast Galvanomagnetic scanner. Scanner is incorporated in nondispersive optical system to achieve speed of blanking better than parts of milliseconds. This new design ensure very high speed and high damage threshold of shutter without using of any dispersive optical elements (lenses, prisms).

Construction. This type of shutter doesn’t use focusing lenses. Beam diagram is presented in Fig.2.
Fig. 2. Beam diagram of collinear shutter. M1-rotating galvo mirror, M2-M4-adjustable 100% metal mirror.

System includes: galvo driver and mount, power supply, galvo mirror, standard cable (Master-Slave) for connecting controller with PC, cable for connecting galvo driver. As an option dpss green or red diode laser should be applied for system alignment (not included).

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident beam diameter, not more</td>
<td>10 mm*</td>
</tr>
<tr>
<td>Laser energy rate, up to</td>
<td>0.3mJ in 10ps pulses</td>
</tr>
<tr>
<td>Laser beam polarization</td>
<td>independent</td>
</tr>
<tr>
<td>Laser power, max</td>
<td>20W</td>
</tr>
<tr>
<td>Switching frequency range, max</td>
<td>0-100Hz</td>
</tr>
<tr>
<td>Switching time (closed-opend), not more</td>
<td>>0.2ms/1ms**</td>
</tr>
<tr>
<td>Typical switching time (opened-opened)</td>
<td>>0.5ms/2ms**</td>
</tr>
<tr>
<td>Control via RS232 port, TTL signal</td>
<td>Yes</td>
</tr>
<tr>
<td>Control from external (0-5V) generator</td>
<td>Yes</td>
</tr>
<tr>
<td>Control from internal (0-5V) generator</td>
<td>Yes</td>
</tr>
<tr>
<td>Manual control</td>
<td>Yes</td>
</tr>
<tr>
<td>Manual switching</td>
<td>Yes</td>
</tr>
<tr>
<td>Shutter position indication</td>
<td>Yes</td>
</tr>
<tr>
<td>Sinchro output</td>
<td>Yes</td>
</tr>
<tr>
<td>Shutter dimensions, max</td>
<td>1854060mm</td>
</tr>
<tr>
<td>Electronic box, max</td>
<td>25214574mm</td>
</tr>
<tr>
<td>Electrical power consumption, not more</td>
<td>100/220V, 30W</td>
</tr>
</tbody>
</table>

* Switching time is dependent on the size of scanner mirror. Please specify laser beam diameter precisely.

** For 10mm and 30mm beam

The results of equipment test are given in the table below. Opening/closing time and residual scattered light are main parameters of shutter.
Operation manual

Alignment of system is very simple and takes only few minutes. For alignment we recommend to use red or green laser. Please keep following order:

1. Align visible laser beam with infrared one.
2. Align beam into the center of shutter’s input hole perpendicularly to the front surface of shutter. For that we recommend to press metal mirror to front surface and get a backward reflection.
4. Switch on power supply of controller. When the power supply is switched-on, the galvo scanner mirror takes position parallel to optical axis (Fig.1). It corresponds to low TTL level and position “beam opened”. Under good alignment of system You will see a 100% visible beam throw over the output hole of shutter.

5. Switcher reconnect to position “CLOSE”. Under rotation of potentiometer “Angle” clockwise You should get a complete closing of beam. Now shutter is prepared to work.

Detailed description of switchers
“OPEN/CLOSE” - for regulation of Shuter under first installation in “Manual” regime.

By rotating potentiometer on front panel You can change angle of galvo mirror before reach complete damping of laser beam in “Close” position. This angle remain valid also when You control shutter from external generator!

“MAN/EXT” - for the control Manually by rotating potentiometer on front panel or by using external pulse generator.

“Analog/Computer” - for shutter drive using analog signals or of from Computer. In the Position Analog You drive Shuter using Manually from internal DC power supply or Externally using pulse generator. TTL Low signal (Ground) correspond “Open” position (100% transmission) whereas TTL High (+5V) correspond “Close” position. When You switch in position Computer TTL pulses are generated from internal generator. You can change frequency of generation by commands (see below Control via RS232 port).

“GEN” - is used for external triggering using positive TTL pulses +(2-5)V. In this case switcher “Manual/External” should be in position “External”, switcher “Analog/Computer” in position “Analog”. Amplitude of shutter angle between Close/Open positions is regulated with potentiometer on front panel. Remember, that shutter due to inertion of mirror have some delay relative to triggering pulse.
Control via RS232 port

Program runs through “serial port terminal.exe”. Then window opens start COM port activation. This should be done from “serial init”, shown in Fig.5. When opens window asks to enter used COM port. After that you are free to enter commands which are listed below.
Installation: Put both files "Serial port terminal.exe" and "Bwcc32.dll" into the same directory. Some default commands can be read by "Serial port terminal.exe" from "bydefault.cfg" file. Note: "Bwcc32.dll" is standard Borland C++ 5.02 dynamic library file, found in the C++ 5.02.

UART configuration:
Boud rate:9600
Data bits:8
Paryti:None
Step bits:1
Handshading:none

Commands:

? – help menu
a70 – open shutter
a71 – close shutter
frX – frequency of opening/closing, where X means frequency (min value 0, max 1000)

Fig.5. Interface of program

NOTE: RS-232 has its own standard where digital 1 =+3…9V and 0=-3…-9V. PC and TTL interface have microchips – level converters, which change these analog signals to TTL standard signals. Through RS232 cable is sent commands are sent in ASCII codes which are listed in “TTL Interface connectors.rtf” file on CD. In it you will find connectors and commands to which they respond.